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1
LATTICE MATCHABLE ALLOY FOR SOLAR
CELLS

This application is a continuation of U.S. application Ser.
No. 14/597,621, filed on Jan. 15, 2015, which is a continua-
tion of U.S. application Ser. No. 14/512,224, now allowed,
filed on Oct. 10, 2014, which is a continuation of U.S. appli-
cation Ser. No. 13/739,989, filed on Jan. 11, 2013, issued as
U.S. Pat. No. 8,912,433, which is a divisional of U.S. appli-
cation Ser. No. 12/749,076, filed on Mar. 29, 2010, each of
which is incorporated by reference herein in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates to multijunction solar cells,
and in particular to high efficiency solar cells comprised of
III-V semiconductor alloys.

Multijunction solar cells made primarily of I1I-V semicon-
ductor alloys are known to produce solar cell efficiencies
exceeding efficiencies of other types of photovoltaic materi-
als. Such alloys are combinations of elements drawn from
columns III and V of the standard Periodic Table, identified
hereinafter by their standard chemical symbols, names and
abbreviation. (Those of'skill in the art can identify their class
of semiconductor properties by class without specific refer-
ence to their column.) The high efficiencies of these solar
cells make them attractive for terrestrial concentrating pho-
tovoltaic systems and systems designed to operate in outer
space. Multijunction solar cells with efficiencies above 40%
under concentrations equivalent to several hundred suns have
been reported. The known highest efficiency devices have
three subcells with each subcell consisting of a functional p-n
junction and other layers, such as front and back surface field
layers. These subcells are connected through tunnel junc-
tions, and the dominant layers are either lattice matched to the
underlying substrate or are grown over metamorphic layers.
Lattice-matched devices and designs are desirable because
they have proven reliability and because they use less semi-
conductor material than metamorphic solar cells, which
require relatively thick buffer layers to accommodate differ-
ences in the lattice constants of the various materials. As set
forth more fully in U.S. patent application Ser. No. 12/217,
818, entitled “GalnNAsSb Solar Cells Grown by Molecular
Beam Epitaxy,” which application is incorporated herein by
reference, a layer made of GalnNAsSb material to create a
third junction having a band gap of approximately 1.0 eV
offers a promising approach to improving the efficiency of
multijunction cells. Improvements are nevertheless to be con-
sidered on the cell described in that application.

The known highest efficiency, lattice-matched solar cells
typically include a monolithic stack of three functional p-n
junctions, or subcells, grown epitaxially on a germanium (Ge)
substrate. The top subcell has been made of (Al)GalnP, the
middle one of (In)GaAs, and the bottom junction included the
Ge substrate. (The foregoing nomenclature for a I11-V alloy,
wherein a constituent element is shown parenthetically,
denotes a condition of variability in which that particular
element can be zero.) This structure is not optimal for effi-
ciency, in that the bottom junction can generate roughly twice
the short circuit current of the upper two junctions, as
reported by J. F. Geisz et al., “Inverted GalnP/(In)GaAs/
InGaAs triple junction solar cells with low-stress metamor-
phic bottom junctions,” Proceedings of the 33 IEEE PVSC
Photovoltaics Specialists Conference, 2008. This extra cur-
rent capability is wasted, since the net current must be uni-
form through the entire stack, a design feature known as
current matching.
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In the disclosure of above noted U.S. patent application
Ser. No. 12/217,818, it was shown that a material that is
substantially lattice matched to Ge or GaAs with a band gap
near 1.0 eV might be used to create a triple junction solar cell
with efficiencies higher than the structure described above by
replacing the bottom Ge junction with a junction made of a
different material that produces a higher voltage.

In addition, it has been suggested that the use of this 1 eV
material might be considered as a fourth junction to take
advantage of the entire portion of the spectrum lying between
0.7 eV (the band gap for germanium) and 1.1 eV (the upper
end of the range of bandgaps for the ~1 eV layer). See for
example, S. R. Kurtz, D. Myers, and J. M. Olson, “Projected
Performance of Three and Four-Junction Devices Using
GaAs and GalnP,” 26th IEEE Photovoltaics Specialists Con-
Serence, 1997, pp. 875-878. Ga, ,In N As,_, has been identi-
fied as such a 1 eV material, but currents high enough to
match the other subcells have not been achieved, see, e.g., A.
J. Ptak et al., Journal of Applied Physics 98 (2005) 094501.
This has been attributed to low minority carrier diffusion
lengths that prevent effective photocarrier collection. Solar
subcell design composed of gallium, indium, nitrogen,
arsenic and various concentrations of antimony (Galn-
NAsSb) has been investigated with the reported outcome that
antimony is helpful in decreasing surface roughness and
allowing growth at higher substrate temperatures where
annealing is not necessary, but the investigators reported that
antimony, even in small concentrations is critical to be
avoided as detrimental to adequate device performance. See
Ptak et al., “Effects of temperature, nitrogen ion, and anti-
mony on wide depletion width GalnNAs,” Journal of Vacuum
Science Technology B 25(3) May/June 2007 pp. 955-959.
Devices reported in that paper have short circuit currents far
too low for integration into multijunction solar cells. Never-
theless, it is known that Ga, InNAs,  Sb, with
0.05=x=0.07, 0.01=y=0.02 and 0.02<7<0.06 can be used to
produce a lattice-matched material with a band gap of
approximately 1 eV that can provide sufficient current for
integration into a multijunction solar cell. However, the volt-
ages generated by subcells containing this material have not
exceeded 0.30 V under 1 sun of illumination. See D. B.
Jackrel et al., Journal of Applied Physics 101 (114916) 2007.
Thus, a triple-junction solar cell with this material as the
bottom subcell has been expected to be only a small improve-
ment upon an analogous triple junction solar cell with a
bottom subcell of Ge, which produces an open circuit voltage
of approximately 0.25 V. See H. Cotal et al., Energy and
Environmental Science 2 (174) 2009. What is needed is a
material that is lattice-matched to Ge and GaAs with a band
gap near 1 eV that produces an open circuit voltage greater
than 0.30 V and sufficient current to match (Al)InGaP and
(In)GaAs subcells. Such a material would also be advanta-
geous as a subcell in high efficiency solar cells with 4 or more
junctions.

SUMMARY OF THE INVENTION

According to the invention, an alloy composition is pro-
vided that has a bandgap of at least 0.9 eV, namely, Ga,_,
In,N,As, ., Sb, with a low antimony (Sb) content and with
enhanced indium (In) content and enhanced nitrogen (N)
content as compared with known alloys of GalnNAsSb,
achieving substantial lattice matching to GaAs and Ge sub-
strates and providing both high short circuit currents and high
open circuit voltages in GaInNAsSb subcells suitable for use
in multijunction solar cells. The composition ranges for
Ga,_In,N As,  Sb, are 0.07=x<0.18, 0.025<y=<0.04 and
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0.001=7<0.03. These composition ranges employ greater
fractions of In and N in GalnNAsSb than previously taught
and allow the creation of subcells with bandgaps that are
design-tunable in the range 0of 0.9-1.1 eV, which is the range
of interest for GalnNAsSb subcells. This composition range
alloy will hereinafter be denoted “low-antimony, enhanced
indium-and-nitrogen GalnNAsSb” alloy. Subcells of such an
alloy can be grown by molecular beam epitaxy (MBE) and
should be able to be grown by metallorganic chemical vapor
deposition (MOCVD), using techniques known to one skilled
in the art.

The invention described herein reflects a further refinement
of' work described in U.S. patent application Ser. No. 12/217,
818, including the discovery and identification of specific
ranges of elements, i.e., a specific alloy mix of the various
elements in GalnNAsSb that improve significantly the per-
formance of the disclosed solar cells.

The invention will be better understood by reference to the
following detailed description in connection with the accom-
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic cross-section of a three junction
solar cell incorporating the invention.

FIG. 1B is a schematic cross-section of a four junction
solar cell incorporating the invention.

FIG. 2A is a schematic cross-section of a GalnNAsSb
subcell according to the invention.

FIG. 2B is a detailed schematic cross-section illustrating an
example GalnNAsSb subcell.

FIG. 3 is a graph showing the efficiency versus band gap
energy of subcells formed from different alloy materials, for
comparison.

FIG. 4 is a plot showing the short circuit current (J,.) and
open circuit voltage (V) of subcells formed from different
alloy materials, for comparison.

FIG. 5 is a graph showing the photocurrent as a function of
voltage for a triple junction solar cell incorporating a subcell
according to the invention, under 1-sun AM1.5D illumina-
tion.

FIG. 6 is a graph showing the photocurrent as a function of
voltage for a triple junction solar cell incorporating a subcell
according to the invention, under AM1.5D illumination
equivalent to 523 suns.

FIG. 7 is a graph of the short circuit current (J,.) and open
circuit voltage (V,_) of low Sb, enhanced In and N Galn-
NAsSb subcells distinguished by the strain imparted to the
film by the substrate.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1A is a schematic cross-section showing an example
of a triple junction solar cell 10 according to the invention
consisting essentially of a low Sb, enhanced In and N Galn-
NAsSb subcell 12 adjacent the Ge, GaAs or otherwise com-
patible substrate 14 with a top subcell 16 of (Al)InGaP and a
middle subcell 18 using (In)GaAs. Tunnel junction 20 is
between subcells 16 and 18, while tunnel junction 22 is
between subcells 18 and 12. Each of the subcells 12, 16, 18
comprises several associated layers, including front and back
surface fields, an emitter and a base. The named subcell
material (e.g., (In)GaAs) forms the base layer, and may or
may not form the other layers.

Low Sb, enhanced In and N GalnNAsSb subcells may also
be incorporated into multijunction solar cells with four or
more junctions without departing from the spirit and scope of
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the invention. FIG. 1B shows one such four junction solar cell
100 with a specific low Sb, enhanced In and N GalnNAsSh
subcell 12 as the third junction, and with a top subcell 16 of
(ADInGaP, a second subcell 18 of (In)GaAs and a bottom
subcell 140 of Ge, which is also incorporated into a germa-
nium (Ge) substrate. Each of the subcells 16, 18, 12, 140 is
separated by respective tunnel junctions 20, 22, 24, and each
of the subcells 16, 18, 12, 140 may comprise several associ-
ated layers, including optional front and back surface fields,
an emitter and a base. The named subcell material (e.g.,
(In)GaAs) forms the base layer, and may or may not form the
other layers.

By way of further illustration, FIG. 2A is a schematic
cross-section in greater detail of a GalnNAsSb subcell 12,
according to the invention. The low Sb, enhanced In and N
GalnNAsSb subcell 12 is therefore characterized by its use of
low Sb, enhanced In and N GalnNAsSb as the base layer 220
in the subcell 12. Other components of the GalnNAsSb sub-
cell 12, including an emitter 26, an optional front surface field
28 and back surface field 30, are preferably III-V alloys,
including by way of example GalnNAs(Sb), (In)(Al)GaAs,
(ADInGaP or Ge. The low Sb, enhanced In and N GalnNAsSh
base 220 may either be p-type or n-type, with an emitter 26 of
the opposite type.

To determine the effect of Sb on enhanced In and N Galn-
NAsSb subcell performance, various subcells of the type (12)
of' the structure shown in FIG. 2B were investigated. FIG. 2B
is a representative example of the more general structure 12 in
FIG. 2A. Base layers 220 with no Sb, low Sb (0.001=z<0.03)
and high Sb (0.03<z<0.06) were grown by molecular beam
epitaxy and were substantially lattice-matched to a GaAs
substrate (not shown). These alloy compositions were veri-
fied by secondary ion mass spectroscopy. The subcells 12
were subjected to a thermal anneal, processed with generally
known solar cell processing, and then measured under the
AM1.5D spectrum (1 sun) below a filter that blocked all light
above the GaAs band gap. This filter was appropriate because
a GalnNAsSb subcell 12 is typically beneath an (In)GaAs
subcell in a multijunction stack (e.g., FIGS. 1A and 1B), and
thus light of higher energies will not reach the subcell 12.

FIG. 3 shows the efficiencies produced by the subcells 12
grown with different fractions of Sb as a function of their band
gaps. The indium and nitrogen concentrations were each in
the 0.07 to 0.18 and 0.025 to 0.04 ranges, respectively. It can
be seen that the low Sb, enhanced In and N GalnNAsSb
subcells (represented by triangles) have consistently higher
subcell efficiencies than the other two candidates (repre-
sented by diamonds and squares). This is due to the combi-
nation of high voltage and high current capabilities in the low
Sb, enhanced In and N GalnNAsSb devices. (See FIG. 4). As
can be seen in FIG. 4, both the low and high concentration Sh
devices have sufficient short-circuit current to match high
efficiency (Al)InGaP subcells and (In)GaAs subcells (>13
mA/cm? under the filtered AM1.5D spectrum), and thus they
may be used in typical three junction or four-junction solar
cells 10, 100 without reducing the total current through the
entire cell. This current-matching is essential for high effi-
ciency. The devices without Sb have relatively high subcell
efficiencies due to their high open circuit voltages, but their
short circuit currents are too low for high efficiency multi-
junction solar cells, as is shown in FIG. 4.

FIG. 4 also confirms that Sb has a deleterious effect on
voltage, as previously reported for other alloy compositions.
However, in contrast to what has been previously reported for
other alloy compositions, the addition of antimony does NOT
decrease the short circuit current. The low Sb-type subcells
have roughly 100 mV higher open-circuit voltages than the
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high Sb-type subcells. To illustrate the effect of this improve-
ment, a triple junction solar cell 10 with an open circuit
voltage of 3.1 V is found to have 3.3% higher relative effi-
ciency compared to an otherwise identical cell with an open
circuit voltage of 3.0 V. Thus, the inclusion of Sb in GalnNAs
(Sb) solar cells is necessary to produce sufficient current for a
high efficiency solar cell, but only by using low Sb (0.1-3%)
can both high voltages and high currents be achieved.

Compressive strain improves the open circuit voltage of
low Sb, enhanced In and N GalnNAsSb subcells 10, 100.
More specifically, low Sb, enhanced In and N GalnNAsSb
layers 220 that have a lattice constant larger than that of a
GaAs or Ge substrate when fully relaxed (<0.5% larger), and
are thus under compressive strain when grown pseudomor-
phically on those substrates. They also give better device
performance than layers with a smaller, fully relaxed lattice
constant (under tensile strain).

FIG. 7 shows the short circuit current and open circuit
voltage of low Sb, enhanced In and N GalnNAsSb subcells
grown on GaAs substrates under compressive strain (tri-
angles) and tensile strain (diamonds). It can be seen that the
subcells under compressive strain have consistently higher
open circuit voltages than those under tensile strain.

Low Sb, enhanced In and N, compressively-strained Galn-
NAsSb subcells have been successfully integrated into high
efficiency multijunction solar cells. FIG. 5 shows a current-
voltage curve of a triple junction solar cell of the structure in
FIG. 1A under AM1.5D illumination equivalent to 1 sun. The
efficiency of this device is 30.5%. FIG. 6 shows the current-
voltage curve of the triple junction solar cell operated under a
concentration equivalent to 523 suns, with an efficiency of
39.2%.

The invention has been explained with reference to specific
embodiments. Other embodiments will be evident to those of
ordinary skill in the art. It is therefore not intended for the
invention to be limited, except as indicated by the appended
claims.
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What is claimed is:

1. A semiconductor alloy composition, wherein the semi-
conductor alloy composition is Ga,  InNAs, . . Sb,
wherein,

the content values for X, y, and z are within composition

ranges as follows: 0.07=x<0.18, 0.025=<y=<0.04 and
0.001=z<0.03;

the content levels are selected such that the semiconductor

alloy composition exhibits a bandgap from 0.9eVto 1.1
eV; and a short circuit current density Jsc greater than 13
mA/cm? and an open circuit voltage Voc greater than 0.3
V when illuminated with a filtered 1 sun AM1.5D spec-
trum in which all light having an energy greater than the
bandgap of GaAs is blocked.

2. The semiconductor alloy composition of claim 1,
wherein the semiconductor alloy composition is character-
ized by a thickness from 1 pm to 2 pm.

3. The semiconductor alloy composition of claim 1,
wherein the semiconductor alloy composition is character-
ized by a thickness greater than 1 pm.

4. The semiconductor alloy composition of claim 1,
wherein the semiconductor alloy composition is substantially
lattice matched to GaAs.

5. The semiconductor alloy composition of claim 1,
wherein the semiconductor alloy composition is substantially
lattice matched to Ge.

6. The semiconductor alloy composition of claim
wherein the semiconductor alloy composition is n-doped.

7. The semiconductor alloy composition of claim
wherein the semiconductor alloy composition is p-doped.

8. The semiconductor alloy composition of claim
wherein the semiconductor alloy composition is in the form
of a layer of semiconductor material.

9. The semiconductor alloy composition of claim 1,
wherein the content values are selected such that the semi-
conductor alloy composition is lattice matched to GaAs or
Ge.



